Two New Members of a Series of Monoclinic Sodium Phosphate Tungsten Bronzes $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{O}_{8}\left(\mathrm{WO}_{3}\right)_{2 m}: \mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}(\boldsymbol{m}=4)$ and $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}(m=6)$

By A. Benmoussa, D. Groult, Ph. Labbé and B. Raveau
Laboratoire de Cristallographie, Physique et Chimie du Solide, LA 251, ISMRA - Université de Caen, 14032 Caen CEDEX, France

(Received 7 March 1983; accepted 16 December 1983)

Abstract. Monoclinic, $P 2_{1} / a$. $\quad \mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}: \quad a=$ 17.788 (11), $\quad b=5.277$ (4), $\quad c=6.607$ (5) A, $\quad \beta=$ $99.64(5)^{\circ}, \quad V=611.42 \AA^{3}, \quad Z=1, \quad$ Mo $K \alpha, \quad \lambda=$ $0.7093 \AA, \mu=400.7 \mathrm{~cm}^{-1}, 294 \mathrm{~K}, R=0.055$ for 2236 unique reflections. $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}: a=23.775$ (17), b $=5.291$ (1), $\quad c=6.588$ (2) $\AA, \quad \beta=93.47$ (4) ${ }^{\circ}, \quad V=$ $827.21 \AA^{3}, \quad Z=1, \quad$ Mo $K \alpha, \quad \lambda=0.7093 \AA, \quad \mu=$ $442.9 \mathrm{~cm}^{-1}, 294 \mathrm{~K}, R=0.043$ for 2305 unique reflections. The frameworks may be described, like that of $\mathrm{K}_{x} \mathrm{P}_{2} \mathrm{~W}_{4} \mathrm{O}_{16}$, as consisting of ReO_{3}-type slabs connected by PO_{4} tetrahedra with distorted hexagonal tunnels where the sodium ions are located. Furthermore, the results confirm that a new monoclinic family $A_{x} \mathrm{P}_{4} \mathrm{O}_{8}\left(\mathrm{WO}_{3}\right)_{2 m}\left(A=\mathrm{Na}^{+}, \mathrm{K}^{+}\right)$, closely related to the orthorhombic series $\mathrm{P}_{4} \mathrm{O}_{8}\left(\mathrm{WO}_{3}\right)_{2 m}$ previously described, can form.

Introduction. The investigation of the $\mathrm{P}-\mathrm{W}-\mathrm{O}$ and $A-\mathrm{P}-\mathrm{W}-\mathrm{O}$ systems allowed us to synthesize three series of tunnel structures which are all built up from ReO_{3}-type slabs connected by PO_{4} tetrahedra. The first family, the $\mathrm{P}_{4} \mathrm{O}_{8}\left(\mathrm{WO}_{3}\right)_{2 m}$ orthorhombic phosphate tungsten bronzes (Giroult, Goreaud, Labbé \& Raveau, 1981b), is characterized by empty pentagonal tunnels, the connection between two successive ' WO_{3} ' slabs being made by 'planes' of single PO_{4} tetrahedra. In the second family, $A_{x} \mathrm{P}_{4} \mathrm{O}_{8}\left(\mathrm{WO}_{3}\right)_{2 m}$ (Giroult, Goreaud, Labbé \& Raveau, 1980, 1981a), called monoclinic pyrophosphate tungsten bronzes, the ' WO_{3} ' slabs are connected through planes of $\mathrm{P}_{2} \mathrm{O}_{7}$ groups; the members of this series, which exhibit wide distorted hexagonal tunnels, are stabilized by big ions such as $\mathrm{K}^{+}, \mathrm{Rb}^{+}$or Tl^{+}. Recently, the structural study of the bronze $\mathrm{K}_{x} \mathrm{P}_{2} \mathrm{~W}_{4} \mathrm{O}_{16}$ (Giroult, Goreaud, Labbé \& Raveau, 1982) led us to predict the existence of a new series of monoclinic phosphate tungsten bronzes with the same formulation $A_{x} \mathrm{P}_{4} \mathrm{O}_{8}\left(\mathrm{WO}_{3}\right)_{2 m}$. The framework of the latter bronzes also contains distorted hexagonal tunnels, but with a smaller size than those of the second family, because the ' WO_{3} ' slabs are not connected through pyrophosphate groups but through single PO_{4} tetrahedra. Only one member, $m=4$, could be obtained in this series, and only in the case of potassium; however,
the structure of $\mathrm{Mo}_{4} \mathrm{O}_{11}$ described by Kihlborg (1963) corresponds to the member $m=6$ of this series in which MoO_{4} tetrahedra replace the PO_{4} tetrahedra, the tunnels being empty. Thus, it appeared that this structure could be stabilized by ions smaller than potassium. The present work deals with the structure of two sodium phosphate bronzes belonging to this series, $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$ and $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$.

Experimental. $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$ and $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$ isolated as pure compounds for x from 1.1 to 1.5 and from 1.6 to 4 , respectively, were prepared by heating a mixture of the appropriate amounts of $\mathrm{H}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PO}_{4}, \mathrm{WO}_{3}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in air at 773 K to decompose the phosphate and carbonate; the necessary amount of metallic tungsten was added and the corresponding mixture heated in an evacuated silica tube at 1173 K for 3 d . $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$ was obtained in the form of coppercoloured needles, while purple needles were isolated for $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$. Chemical analysis by atomic absorption spectrometry was made by picking out several crystals from the preparations corresponding to the nominal compositions $\mathrm{Na}_{1 \cdot 5} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$ and $\mathrm{Na}_{2 \cdot 4} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$; the mean Na compositions were close to that of the initial matrix: $\left[\mathrm{Na}_{1 \cdot 4(0 \cdot 2)}\right] \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$ and $\left[\mathrm{Na}_{2 \cdot 2(0 \cdot 2)}\right] \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$.

Crystals were b-axis needles with hexagonal section limited by forms $\{100\},\{001\},\{70 \overline{4}\}$ and $\{010\}$ for $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32},\{100\},\{201\},\{201\}$ and $\{010\}$ for $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$. Crystals $30 \times 48 \times 456$ and $48 \times 60 \times$ $380 \mu \mathrm{~m}$, respectively; monoclinic symmetry deduced from Weissenberg and precession photographs. For the two compounds, $h 0 l, h 1 l$ and $h 2 l$ photographs are similar to those of $\mathrm{K}_{x} \mathrm{P}_{2} \mathrm{~W}_{4} \mathrm{O}_{16}$ and the cell parameters also seem very similar. Observation of the $h k l$ level with $k>3$ shows additional reflections which lead to doubling of the a parameter; systematic absences $h 0 l$ $(h=2 n+1), 0 k 0(k=2 n+1)$ lead to $P 2_{1} / a$ with lattice parameters deduced from least-squares refinement of 25 powder-pattern general reflections registered with a Philips goniometer and Cu Ka radiation. CAD-4 Enraf-Nonius diffractometer, graphite monochromator, $2 \theta_{\text {max }}=78^{\circ}$ for $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}(-31 \leq h \leq$ $31,0 \leq k \leq 9,0 \leq l \leq 11)$ and $2 \theta_{\text {max }}=90^{\circ}$ for $\mathrm{Na}_{x} \mathrm{P}_{4}$
(c) 1984 International Union of Crystallography
$\mathrm{W}_{12} \mathrm{O}_{44}(-47 \leq h \leq 47,0 \leq k \leq 10,0 \leq l \leq 13)$, the $\omega-2 \theta$ technique, scan width 1.40°, background intensity recorded on both sides of each reflection, stability of crystal verified with a periodic control; 4290 reflections for $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$ and 2536 for $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$ within a quarter of the reciprocal space measured; Lorentz and polarization effects corrected for 2236 and 2305 independent reflections which satisfied the criterion $\sigma(I) / I \leq 0.333$; min. and max. transmission factors 0.168 and $0.345,0.063$ and 0.183 , respectively. Structures solved by heavy-atom method; W atom positions fixed by Patterson function, $\mathrm{P}, \mathrm{O}, \mathrm{Na}$ atoms located by a subsequent difference synthesis. Determination of Na composition of crystals by refinement was carried out, in spite of its low accuracy owing to strong correlation between the occupancy factors and the thermal coefficients; observed occupancy factors of the Na sites of 37 (8) and 42 (7)\% lead to $\mathrm{Na}_{1 \cdot 5} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$ and $\mathrm{Na}_{1 \cdot 7} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$; these are in agreement with the formulas deduced from the chemical analysis - $\mathrm{Na}_{1 \cdot 4} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$ and $\mathrm{Na}_{2 \cdot 2} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$ - if one takes into account the fact that the amount of sodium may vary significantly from one crystal to another. Linear weighting scheme adjusted according to $\left\langle w^{1 / 2}\right|\left|F_{o}\right|-\left|F_{c}\right|| \rangle$ in terms of $\sin \theta / \lambda$; refinement on F of atom positions, anisotropic, by full-matrix least squares (ORFLS; Busing, Martin \& Levy, 1962), $(\Delta / \sigma)_{\max }=0.1, \quad R=0.055, \quad R_{w}=0.048 \quad$ for $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}, \quad R=0.043, \quad R_{w}=0.039 \quad$ for $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$; no correction for secondary extinction, final $\Delta \rho$ excursions $<1 \mathrm{e} \dot{\AA}^{-3}$; atomic scattering factors and $f^{\prime}, f^{\prime \prime}$ values from International Tables for X-ray Crystallography.*

Discussion. The atomic parameters are given in Table 1 , and the main interatomic distances in Tables 2 and 3. The projections of the structures for both oxides onto (010) are shown in Figs. 1 and 2.

The host lattices of these bronzes are similar to that of $\mathrm{K}_{x} \mathrm{P}_{2} \mathrm{~W}_{4} \mathrm{O}_{16}$ (Giroult et al., 1982) in that they are built up from corner-sharing WO_{6} octahedra and PO_{4} tetrahedra forming ReO_{3}-type slabs connected through planes of 'single' tetrahedra with distorted hexagonal tunnels in which the sodium ions are located. $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$ corresponds, like $\mathrm{K}_{x} \mathrm{P}_{2} \mathrm{~W}_{4} \mathrm{O}_{16}$, to the fourth member of the series $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{O}_{8}\left(\mathrm{WO}_{3}\right)_{2 m}$, i.e. its ReO_{3}-type slabs are formed of strings of $m=4$ octahedra running approximately along the [114] direction or of two octahedra along [102], while $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$ corresponds to the sixth member of the series, formed by strings of six octahedra along [118].

[^0]Table 1. Fractional atomic coordinates and thermal parameters with e.s.d.'s in parentheses for $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$ and $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$				
W(1) 4(e)	0.20591 (1)	0.26064 (11)	$0 \cdot 14025$ (5)	0.35 (2)
W(2) 4(e)	0.37481 (1)	0.25849 (13)	0.56011 (5)	0.33 (2)
P 4(e)	0.0634 (1)	0.2740 (5)	0.7142 (3)	0.25 (2)
O(1) 4(e)	$0 \cdot 1105$ (5)	0.245 (3)	0.9308 (14)	0.91 (8)
$\mathrm{O}(2)$ 4(e)	0.0846 (6)	0.067 (2)	0.5751 (18)	0.99 (11)
O(3) 4(e)	0.4266 (5)	0.0416 (18)	0.3689 (16)	0.79 (9)
O(4) 4(e)	0.4794 (4)	0.2684 (17)	0.7410 (11)	0.51 (7)
O(5) 4(e)	$0 \cdot 1505$ (5)	0.4829 (17)	0.3021 (16)	0.66 (8)
O(6) 4(e)	$0 \cdot 1619$ (5)	-0.0241 (16)	0.2642 (14)	0.55 (8)
$\mathrm{O}(7)$ 4(e)	0.2893 (5)	0.2618 (19)	0.3620 (14)	0.89 (8)
$\mathrm{O}(8) 4(e)$	0.2572 (5)	0.0384 (17)	0.9850 (15)	0.68 (9)
Na 4 (e)	0.008 (2)	0.225 (9)	0.139 (7)	2.7 (5)
$\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$				
W(1) 4(e)	$0 \cdot 27960$ (1)	$0 \cdot 24069$ (13)	0.67190 (13)	0.31 (1)
W(2) 4(e)	0.40705 (1)	0.24121 (11)	0.35909 (10)	$0 \cdot 26$ (1)
W(3) 4(e)	$0 \cdot 15480$ (1)	0.23644 (11)	0.99311 (12)	0.27 (1)
P 4(e)	0.04687 (8)	0.2256 (4)	0.3261 (8)	0.21 (2)
O(1) 4(e)	0.2541 (3)	0.5255 (15)	$0 \cdot 530$ (3)	0.66 (9)
$\mathrm{O}(2) 4(e)$	0.3468 (3)	0.2308 (19)	0.510 (3)	0.75 (10)
$\mathrm{O}(3) 4(e)$	0.3221 (3)	0.4535 (15)	0.866 (3)	0.57 (8)
O(4) 4(e)	0.3116 (4)	0.9548 (17)	0.823 (3)	0.69 (9)
$\mathrm{O}(5) 4(e)$	0.0819 (4)	0.259 (3)	0.140 (3)	1.01 (10)
$\mathrm{O}(6) 4(e)$	0.4464 (3)	0.4588 (15)	0.589 (3)	0.63 (9)
$\mathrm{O}(7) 4(e)$	0.4393 (4)	-0.0667 (19)	0.514 (3)	0.95 (11)
O(8) 4(e)	0.2151 (3)	0.2395 (18)	0.828 (2)	0.67 (8)
$\mathrm{O}(9) 4(e)$	0.1103 (4)	0.0219 (16)	0.789 (3)	0.67 (9)
$\mathrm{O}(10) 4(e)$	$0 \cdot 1190$ (3)	0.5226 (15)	0.836 (3)	0.61 (9)
$\mathrm{O}(11) 4(e)$	0.4852 (2)	0.2318 (14)	0.248 (2)	0.42 (7)
$\mathrm{Na} 4(e)$	$0 \cdot 5086$ (12)	0.215 (6)	0.862 (7)	$2 \cdot 3$ (6)

Table 2. Interatomic distances and angles with e.s.d.'s in parentheses for $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$

Distances (\AA)		Angles (${ }^{\circ}$)	
WO_{6} octahedra			
$\mathrm{W}(1)-\mathrm{O}(1)$	2.003 (8)	$\mathrm{O}(1)-\mathrm{W}(1)-\mathrm{O}(7)$	173.2 (4)
$\mathrm{W}(1)-\mathrm{O}(5)$	1.960 (10)	$\mathrm{O}(5)-\mathrm{W}(1)-\mathrm{O}(6)$	87.6 (4)
$\mathrm{W}(1)-\mathrm{O}(6)$	1.937 (9)	$\mathrm{O}(5)-\mathrm{W}(1)-\mathrm{O}\left(8^{\prime}\right)$	91.1 (4)
$\mathrm{W}(1)-\mathrm{O}(7)$	1.901 (8)	$\mathrm{O}(6)-\mathrm{W}(1)-\mathrm{O}(8)$	90.8 (4)
$\mathrm{W}(1)-\mathrm{O}\left(8^{1}\right)$	1.890 (9)	$\mathrm{O}(8)-\mathrm{W}(1)-\mathrm{O}(8)$	90.5 (4)
$\mathrm{W}(1)-\mathrm{O}(8)$	1.856 (9)		
(W(1)-O)	1.924 (9)		
$\mathrm{W}(2)-\mathrm{O}\left(2^{\text {i }}\right.$)	2.046 (11)	$\mathrm{O}(2)-\mathrm{W}(2)-\mathrm{O}(3)$	87.0 (4)
W(2)-O(3)	2.035 (10)	$\mathrm{O}(2)-\mathrm{W}(2)-\mathrm{O}(6)$	88.1 (4)
$\mathrm{W}(2)-\mathrm{O}(4)$	2.036 (6)	$\mathrm{O}(3)-\mathrm{W}(2)-\mathrm{O}(5)$	92.1 (4)
W(2)-O(5)	1.811 (9)	$\mathrm{O}(5)-\mathrm{W}(2)-\mathrm{O}\left(6^{\prime}\right)$	92.3 (4)
$\mathrm{W}(2)-\mathrm{O}\left(6^{\prime}\right)$	1.828 (9)	$\mathrm{O}(4)-\mathrm{W}(2)-\mathrm{O}(7)$	170.4 (4)
W(2)-O(7)	$1.832(8)$		
(W(2)-O)	1.931 (9)		
PO_{4} tetrahedra			
$\mathrm{P}-\mathrm{O}(1)$	1.539 (9)	$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	109.9 (7)
$\mathrm{P}-\mathrm{O}(2)$	1.514 (12)	$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}\left(3^{\text {i }}\right.$)	$110 \cdot 3$ (7)
$\mathrm{P}-\mathrm{O}\left(3^{\text {i }}\right.$)	1.536 (10)	$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}\left(4^{\text {ii) }}\right.$	$105 \cdot 3$ (5)
$\mathrm{P}-\mathrm{O}\left(4^{\text {ii) }}\right.$)	1.550 (11)	$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}\left(3^{\prime}\right)$	112.9 (7)
		$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}\left(4^{\text {ii) }}\right.$)	107.9 (6)
, P-O)	1.535 (11)	$\mathrm{O}\left(3^{2}\right)-\mathrm{P}-\mathrm{O}\left(4^{\text {ii }}\right.$)	110.2 (6)
NaO_{18} polyhedra			
$\mathrm{Na}-\mathrm{O}(1)$	2.46 (5)		
$\mathrm{Na}-\mathrm{O}\left(4^{\prime}\right)$	2.53 (5)		
$\mathrm{Na}-\mathrm{O}\left(3^{\text {ii }}\right.$)	2.58 (5)		
$\mathrm{Na}-\mathrm{O}\left({ }^{\text {iii) }}\right.$	2.59 (4)		
$\mathrm{Na}-\mathrm{O}(5)$	2.91 (4)		
$\mathrm{Na}-\mathrm{O}\left(4^{\text {i }}\right.$)	2.97 (5)		
$\mathrm{Na}-\mathrm{O}(6)$	3.02 (4)		
$\mathrm{Na}-\mathrm{O}(2)$	3.08 (4)		
$\mathrm{Na}-\mathrm{O}\left({ }^{\text {(iiI) }}\right.$)	$3 \cdot 12$ (5)		

Table 3. Interatomic distances and angles with e.s.d.'s in parentheses for $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$

Distances (\AA)

WO ${ }_{6}$ octahedra	
$\mathrm{W}(1)-\mathrm{O}(1)$	1.854 (11)
$\mathrm{W}(1)-\mathrm{O}(1)$	1.887 (14)
$\mathrm{W}(1)-\mathrm{O}(2)$	1.973 (12)
W(1)-O(3)	1.939 (12)
W(1)-O(4)	1.937 (12)
$\mathrm{W}(1)-\mathrm{O}(8)$	1.894 (11)
〈W(1)-0)	1.914 (12)
W(2)-O(2)	1.790 (12)
W(2)-O(6)	2.075 (14)
W(2)-O(7)	2.043 (11)
W(2)-O(9)	1.806 (12)
$\mathrm{W}(2)-\mathrm{O}(10)$	1.809 (13)
W(2)-O(11)	2.036 (7)
(W(2)-0)	1.927 (12)
W(3)-O(3)	1.825 (11)
W(3)-O(4)	1.821 (14)
W(3)-O(5)	2.035 (13)
W(3)-O(8)	1.850 (12)
W(3)-O(9)	2.010 (14)
W(3)-O(10)	1.991 (11)
<W(3)-O〉	1.922 (13)
PO_{4} tetrahedra	
$\mathrm{P}-\mathrm{O}$ (5)	1.533 (17)
$\mathrm{P}-\mathrm{O}(6)$	1.521 (10)
$\mathrm{P}-\mathrm{O}(7)$	1.542 (13)
$\mathrm{P}-\mathrm{O}(11)$	1.540 (7)
<P-O)	1.534 (12)
NaO_{18} polyhedra	
$\mathrm{Na}-\mathrm{O}$ (5)	2.45 (4)
$\mathrm{Na}-\mathrm{O}(11)$	2.47 (3)
$\mathrm{Na}-\mathrm{O}(6)$	2.60 (4)
$\mathrm{Na}-\mathrm{O}(11)$	2.64 (5)
$\mathrm{Na}-\mathrm{O}(9)$	2.85 (3)
$\mathrm{Na}-\mathrm{O}(10)$	2.92 (3)
$\mathrm{Na}-\mathrm{O}(7)$	2.93 (5)
$\mathrm{Na}-\mathrm{O}\left(11^{\prime}\right)$	3.02 (3)
$\mathrm{Na}-\mathrm{O}$ (7i)	3.11(4)

Angles (${ }^{\circ}$)

$\mathrm{O}\left(1^{\prime}\right)-\mathrm{W}(1)-\mathrm{O}(4)$	$175.8(4)$
$\mathrm{O}(1)-\mathrm{W}(1)-\mathrm{O}(2)$	$90.0(5)$
$\mathrm{O}(1)-\mathrm{W}(1)-\mathrm{O}(8)$	$93.1(5)$
$\mathrm{O}(2)-\mathrm{W}(1)-\mathrm{O}(3)$	$88.0(5)$
$\mathrm{O}(3)-\mathrm{W}(1)-\mathrm{O}(8)$	$93.0(5)$
$\mathrm{O}(7)-\mathrm{W}(2)-\mathrm{O}(9)$	$171.0(5)$
$\mathrm{O}(2)-\mathrm{W}(2)-\mathrm{O}(6)$	$87.5(5)$
$\mathrm{O}(2)-\mathrm{W}(2)-\mathrm{O}(10)$	$97.0(5)$
$\mathrm{O}(6)-\mathrm{W}(2)-\mathrm{O}(11)$	$83.8(4)$
$\mathrm{O}(10)-\mathrm{W}(2)-\mathrm{O}(11)$	$90.7(5)$
$\mathrm{O}(3)-\mathrm{W}(3)-\mathrm{O}(10)$	$172.0(3)$
$\mathrm{O}(4)-\mathrm{W}(3)-\mathrm{O}(5)$	$90.1(6)$
$\mathrm{O}(5)-\mathrm{W}(3)-\mathrm{O}(9)$	$85.4(6)$
$\mathrm{O}(8)-\mathrm{W}(3)-\mathrm{O}(9)$	$90.4(6)$
$\mathrm{O}(4)-\mathrm{W}(3)-\mathrm{O}(8)$	$93.5(6)$
$\mathrm{O}(5)-\mathrm{P}-\mathrm{O}(6)$	$110.5(7)$
$\mathrm{O}(5)-\mathrm{P}-\mathrm{O}(7)$	$11.1(7)$
$\mathrm{O}(6)-\mathrm{P}-\mathrm{O}(7)$	$13.2(8)$
$\mathrm{O}(6)-\mathrm{P}-\mathrm{O}(11)$	$109.6(4)$
$\mathrm{O}(7)-\mathrm{P}-\mathrm{O}(11)$	$106.4(6)$
$\mathrm{O}(5)-\mathrm{P}-\mathrm{O}(11)$	$105.6(7)$

$$
\text { Symmetry code: (i) } \frac{1}{2}-x, \frac{1}{2}+y, \bar{z}
$$

The geometry of the polyhedra observed for $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$ is very close to that observed for $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$, although it corresponds to a new member of the series. According to their environment with respect to the metallic atoms, three kinds of tungsten atoms can be distinguished: two of them, $\mathrm{W}(2)$ and $\mathrm{W}(3)$, are identical to those observed in $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$ and $\mathrm{K}_{x} \mathrm{P}_{2} \mathrm{~W}_{4} \mathrm{O}_{16}$ and correspond to the octahedral metallic environment formed by $3 P+3 W$ for $W(2)$ and $1 \mathrm{P}+5 \mathrm{~W}$ for $\mathrm{W}(3)$, the distortion of the metallic octahedra $\mathrm{P}_{3} \mathrm{~W}_{3}$ and PW_{5} increasing with the number of phosphorus atoms as previously described in $\mathrm{K}_{x} \mathrm{P}_{2} \mathrm{~W}_{4} \mathrm{O}_{16}$ (Giroult et al., 1982), $\mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$ (Giroult et al., 1981) and $\mathrm{P}_{4} \mathrm{~W}_{10} \mathrm{O}_{38}$ (Benmoussa, Labbé, Groult \& Raveau, 1982). The third group of tungsten atoms $\mathrm{W}(1)$ is octahedrally surrounded by six tungsten atoms $2 \mathrm{~W}(1)+3 \mathrm{~W}(3)+1 \mathrm{~W}(2)$ and appears to be less offcentered $[0.06(1) \AA]$ than for $W_{s} \mathrm{P}$ octahedra $[0 \cdot 10(1) \AA]$ or for $W_{3} \mathrm{P}_{3}$ octahedra $[0 \cdot 24$ (1) $\AA]$. These results are to be compared to those observed for $\mathrm{K}_{x} \mathrm{P}_{2} \mathrm{~W}_{4} \mathrm{O}_{16}$ and $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$ for which the W atoms are shifted by $0.13-0.12$ (1) \AA in the PW_{5} octahedra and by $0.24-0.25(1) \AA$ in the $W_{3} \mathrm{P}_{3}$ octahedra. As
shown from the interatomic distances and angles (Tables 2 and 3), the PO_{4} tetrahedra and WO_{6} octahedra of these compounds are almost regular, but the P and W atoms are somewhat off-centered inside their polyhedra. The evolution of the $\mathrm{W}-\mathrm{O}$ distances and $\mathrm{O}-\mathrm{W}-\mathrm{O}$ angles is indeed correlated to the number of PO_{4} tetrahedra linked to each WO_{6} octahedron. For the WO_{6} octahedra which are linked to three PO_{4} tetrahedra, the $\mathrm{W}(2)$ atoms of both oxides exhibit a $3+3$ coordination and are off-centered by $0 \cdot 16$ (1) \AA as in $\mathrm{K}_{x} \mathrm{P}_{2} \mathrm{~W}_{4} \mathrm{O}_{16}$ [0.16 (1) \AA]. In the WO_{6} octahedra, which are linked to only one PO_{4} tetrahedron, the $\mathrm{W}(1)$ atoms of $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$ and $\mathrm{W}(3)$ of $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$ are less off-centered: 0.08 (1) and 0.15 (1) \AA respectively, which can be compared to 0.08 (1) \AA in $\mathrm{K}_{x} \mathrm{P}_{2} \mathrm{~W}_{4} \mathrm{O}_{16}$. Finally, the $\mathrm{W}(1) \mathrm{O}_{6}$ octahedra of $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$, which are only linked to octahedra, are the most regular, $\mathrm{W}(1)$ being off-centered by only 0.07 (1) \AA. The main difference between the sodium bronzes and $\mathrm{K}_{x} \mathrm{P}_{2} \mathrm{~W}_{4} \mathrm{O}_{16}$ concerns the nature of the monoclinic cell which exhibits an a parameter twice the size of the c parameter of $\mathrm{K}_{x} \mathrm{P}_{2} \mathrm{~W}_{4} \mathrm{O}_{16}$ involving a different space group. In this respect the structure of the sodium phosphate bronzes and especially that of $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$ is more closely related to $\eta-\mathrm{Mo}_{4} \mathrm{O}_{11}$ which corresponds to the sixth member of the series with empty tunnels; the latter is indeed characterized by the same space

Fig. 1. Projection of the structure of $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{8} \mathrm{O}_{32}$ onto (010).

Fig. 2. Projection of the structure of $\mathrm{Na}_{x} \mathrm{P}_{4} \mathrm{~W}_{12} \mathrm{O}_{44}$ onto (010).
group ($P 2_{1} / a$) and very similar distortions. In contrast to $\mathrm{K}_{x} \mathrm{P}_{2} \mathrm{~W}_{4} \mathrm{O}_{16}$, the P and W or Mo atoms in these compounds are not located at the levels $y=\frac{1}{4}$ and $y=\frac{3}{4}$, but are slightly displaced from these planes. These displacements take place in opposite directions along [010] for two successive ReO_{3}-type slabs, with the result that the adjacent strings of octahedra belonging to a same slab are tilted with respect to one another. Thus, the structures of these sodium bronzes, as well as that of $\eta-\mathrm{Mo}_{4} \mathrm{O}_{11}$, are characterized by puckered ReO_{3}-type slabs.

The distribution of the sodium ions in the structure is worthy of note. In spite of their small size they are located in the distorted hexagonal tunnels while the 'perovskite' cages formed by eight octahedra or by seven octahedra and one tetrahedron are unoccupied. Moreover, the sodium ions which have four closest oxygen neighbors, with $\mathrm{Na}-\mathrm{O}$ distances ranging from 2.45 (4) to 2.64 (5) \AA, are more off-centered inside the tunnels than the K^{+}ions in $\mathrm{K}_{x} \mathrm{P}_{2} \mathrm{~W}_{4} \mathrm{O}_{16}$. The sodium ions are indeed shifted by 1.06 (4) and 1.04 (5) \AA for $m=4$ and $m=6$ respectively from the center of gravity of the ' O_{18} ' cage compared to 0.95 (4) \AA for the K^{+}ion in $\mathrm{K}_{x} \mathrm{P}_{2} \mathrm{~W}_{4} \mathrm{O}_{16}$. In the same way, the ' O_{18} ' cages of these bronzes are more distorted than those of $\mathrm{K}_{x} \mathrm{P}_{2} \mathrm{~W}_{4} \mathrm{O}_{16}$ owing to the tilting of the strings of octahedra around their own direction, the angle of the tilt being close to 5° in both oxides.

This structural study shows that several members of the phosphate tungsten bronze family $A_{x} \mathrm{P}_{4} \mathrm{O}_{8}\left(\mathrm{WO}_{3}\right)_{2 m}$ of monoclinic symmetry can be stabilized by the presence of sodium in the distorted hexagonal tunnels. It is now established that this family can be synthesized
for ions of the same size or smaller than potassium, the monoclinic pyrophosphate tungsten bronzes being obtained for ions of the same size or bigger than potassium. This is to be compared with the results previously obtained by Magneli (1949, 1953) for the alkali tungsten bronzes $A_{x} \mathrm{WO}_{3}$, the hexagonal tungsten bronzes being obtained in normal conditions only for K^{+}and ions bigger than K^{+}, whereas the tetragonal tungsten bronzes were synthesized for K^{+}and smaller ions. Studies are being carried out in order to isolate other members of this series, and especially odd- m members, which should differ from even members by a translation of the successive 'phosphate planes' with respect to each other. The influence of the distortion on the electron transport of these oxides will also be studied.

References

Benmoussa, A., Labbé, Ph., Groult, D. \& Raveau, B. (1982). J. Solid State Chem. 44, 318-325.
busing, W. R., Martin, K. O. \& Levy, H. A. (1962). orfls. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Giroult, J. P., Goreaud, M., Labbé, Ph. \& Raveau, B. (1980). Acta Cryst. B36, 2570-2575.
Giroult, J. P., Goreaud, M., Labbé, Ph. \& Raveau, B. (1981a). Acta Cryst. B37, 1163-1166.
Giroult, J. P., Goreaud, M., Labbé, Ph. \& Raveau, B. (1981b). Acta Cryst. B37, 2139-2142.
Giroult, J. P., Goreaud, M., Labbé, Ph. \& Raveau, B. (1982). J. Solid State Chem. 44, 407-417.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Kihlborg, L. (1963). Ark. Kemi, 21, 365-377.
Magnéli, A. (1949). Ark. Kemi, 1, 213-221.
Magnéli, A. (1953). Acta Chem. Scand. 7, 315-324.

Acta Cryst. (1984). C40, 576-579

The Structure of the $\boldsymbol{\kappa}$ Phase, $\mathbf{M n}_{\mathbf{5}} \mathbf{G e}_{\mathbf{2}}$

By T. Ohba, K. Ueyama, Y. Kitano and Y. Komura
Department of Materials Science, Faculty of Science, Hiroshima University, Higashi-senda-machi, Naka-ku, Hiroshima 730, Japan

(Received 4 October 1983; accepted 21 November 1983)

Abstract. $M_{r}=419.87$, orthorhombic, Ibam, $a=$ $11.781(8), \quad b=6.136$ (6), $\quad c=5.368$ (2) $\AA, \quad V=$ $388.0 \AA^{3}, \quad D_{m}=7.19(4), D_{x}=7.19 \mathrm{Mg} \mathrm{m}^{-3}, Z=4$, $\lambda($ Mo $K \alpha)=0.71069 \AA, \quad \mu($ Mo $K \alpha)=31.6 \mathrm{~mm}^{-1}$, $F(000)=756$, room temperature. The structure was found to be a modification of $\mathrm{Mg}_{5} \mathrm{Ga}_{2}$ or $\mathrm{Cu}_{5} \mathrm{As}_{2}$ and was refined by full-matrix least squares to a final $R_{w}(F)$ value of 0.0402 , based on 198 independent reflections. The unit cell is made up of four-by-two-by-two body-centered subcells with four atoms removed and
the rest shifted somewhat in position. There are three kinds of coordination polyhedra in the structure, CN12, CN11 and two CN10. Ge atoms are surrounded solely by Mn atoms. The structure is described as a packing of CN 10 polyhedra around Ge atoms.

Introduction. In the $\mathrm{Mn}-\mathrm{Ge}$ system, four intermetallic compounds, $\mathrm{Mn}_{3.25} \mathrm{Ge}, \mathrm{Mn}_{5} \mathrm{Ge}_{2}, \mathrm{Mn}_{5} \mathrm{Ge}_{3}$ and $\mathrm{Mn}_{3} \mathrm{Ge}_{2}$, were reported by Elliot (1965). Wachtel \& Henig (1969) examined magnetic properties for this system
© 1984 International Union of Crystallography

[^0]: * Lists of observed and calculated structure factors and of anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39096 (28 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

